A Tutte polynomial for maps II: The non-orientable case
نویسندگان
چکیده
منابع مشابه
On the tutte polynomial of benzenoid chains
The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.
متن کاملOrientable and non-orientable maps with given automorphism groups
We prove that for every finite group G there exist orient able as well as non-orientable maps with automorphism group isomorphic to G.
متن کاملNon-orientable quasi-trees for the Bollobás-Riordan polynomial
We extend the quasi-tree expansion of A. Champanerkar, I. Kofman, and N. Stoltzfus to not necessarily orientable ribbon graphs. We study the duality properties of the Bollobás-Riordan polynomial in terms of this expansion. As a corollary, we get a “connected state” expansion of the Kauffman bracket of virtual link diagrams. Our proofs use extensively the partial duality of S. Chmutov.
متن کاملA Convolution Formula for the Tutte Polynomial
Let M be a finite matroid with rank function r. We will write A M when we mean that A is a subset of the ground set of M, and write M|A and M A for the matroids obtained by restricting M to A and contracting M on A respectively. Let M* denote the dual matroid to M. (See [1] for definitions). The main theorem is Theorem 1. The Tutte polynomial TM(x, y) satisfies TM(x, y)= : A M TM|A(0, y) TM A(x...
متن کاملInner reflectors and non-orientable regular maps
Regular maps on non-orientable surfaces are considered with particular reference to the properties of inner reflectors, corresponding to symmetries of the 2-fold smooth orientable covering which project onto local reflections of the map itself. An example is given where no inner reflector is induced by an involution, and the existence of such involutions is related to questions of symmetry of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2020
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2020.103095